Finite difference method for a fractional porous medium equation
نویسندگان
چکیده
منابع مشابه
A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملPerron’s Method for the Porous Medium Equation
This work extends Perron’s method for the porous medium equation in the slow diffusion case. The main result shows that nonnegative continuous boundary functions are resolutive in a general cylindrical domain.
متن کاملA Linearly Implicit Finite-Difference Scheme for the One-Dimensional Porous Medium Equation
We present and analyze a linearly implicit finite-difference scheme for computing approximate solutions and interface curves for the porous medium equation in one space variable. Our scheme requires only that linear, tridiagonal systems of equations be solved at each time step. We derive error bounds for the approximate interface curves as well as for the approximate solutions under the rather ...
متن کاملFinite difference approximations for a fractional diffusion/anti-diffusion equation
A class of finite difference schemes for solving a fractional anti-diffusive equation, recently proposed by Andrew C. Fowler to describe the dynamics of dunes, is considered. Their linear stability is analyzed using the standard Von Neumann analysis: stability criteria are found and checked numerically. Moreover, we investigate the consistency and convergence of these schemes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calcolo
سال: 2013
ISSN: 0008-0624,1126-5434
DOI: 10.1007/s10092-013-0103-7